1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
use std::collections::{HashMap, HashSet};
use std::f64;
use regex::Regex;
use rustc_serialize::json;
static DEFAULT_SMOOTHING: f64 = 1.0f64;
#[derive(Debug, Clone, RustcDecodable, RustcEncodable)]
pub struct Classifier {
vocab: HashSet<String>,
num_examples: u32,
smoothing: f64,
classifications: HashMap<String, Classification>
}
#[derive(Debug, Clone, RustcDecodable, RustcEncodable)]
struct Classification {
label: String,
num_examples: u32,
num_words: u32,
probability: f64,
default_word_probability: f64,
words: HashMap<String, (u32, f64)>,
}
impl Classifier {
pub fn new() -> Classifier {
Classifier {
vocab: HashSet::new(),
num_examples: 0u32,
smoothing: DEFAULT_SMOOTHING,
classifications: HashMap::new(),
}
}
pub fn add_document_tokenized(&mut self, document: &Vec<String>, label: &String) {
if document.len() == 0 { return; }
if !self.classifications.contains_key(label) {
let c = Classification::new(label);
self.classifications.insert(label.clone(), c);
}
let mut classification = self.classifications.get_mut(label).unwrap();
for word in document.iter() {
classification.add_word(word);
self.vocab.insert(word.to_string());
}
self.num_examples += 1;
classification.num_examples += 1;
}
pub fn add_document(&mut self, document: &String, label: &String) {
self.add_document_tokenized(&split_document(document), label);
}
pub fn add_documents(&mut self, examples: &Vec<(String, String)>) {
for &(ref document, ref label) in examples.iter() {
self.add_document(document, label);
}
}
pub fn add_documents_tokenized(&mut self, examples: &Vec<(Vec<String>, String)>) {
for &(ref document, ref label) in examples.iter() {
self.add_document_tokenized(document, label);
}
}
pub fn get_labels(&self) -> Vec<String> {
let labels: Vec<String> =
self.classifications.values().map(|c| c.label.clone()).collect();
labels
}
pub fn set_smoothing(&mut self, smoothing: f64) {
if smoothing <= 0.0 {
panic!("smoothing value must be a positive number");
}
self.smoothing = smoothing;
}
pub fn train(&mut self) {
for (_, classification) in self.classifications.iter_mut() {
classification.train(&self.vocab, self.num_examples, self.smoothing);
}
}
pub fn classify_tokenized(&self, document: &Vec<String>) -> String {
let mut max_score = f64::NEG_INFINITY;
let mut max_classification = None;
for classification in self.classifications.values() {
let score = classification.score_document(document, &self.vocab);
if score > max_score {
max_classification = Some(classification);
max_score = score;
}
}
max_classification.expect("no classification found").label.clone()
}
pub fn classify(&self, document: &String) -> String {
self.classify_tokenized(&split_document(document))
}
pub fn get_document_probabilities_tokenized(&self, document: &Vec<String>) -> Vec<(String, f64)> {
let all_probs:Vec<(String, f64)> = self.classifications.values().map(|classification| {
let score = classification.score_document(document, &self.vocab);
(classification.label.clone(), score)
}).collect();
let total_prob = all_probs.iter()
.map(|&(_, s)| s)
.fold(0.0, |acc, s| acc + s);
all_probs.into_iter().map(|(c, s)| (c, 1.0 - s/total_prob) ).collect()
}
pub fn get_document_probabilities(&self, document: &String) -> Vec<(String, f64)> {
self.get_document_probabilities_tokenized(&split_document(document))
}
pub fn to_json(&self) -> String {
json::encode(self).ok().expect("encoding JSON failed")
}
pub fn from_json(encoded: &str) -> Classifier {
let classifier: Classifier = json::decode(encoded).ok().expect("decoding JSON failed");
classifier
}
}
impl Classification {
fn new(label: &String) -> Classification {
Classification {
label: label.clone(),
num_examples: 0u32,
num_words: 0u32,
probability: 0.0f64,
default_word_probability: 0.0f64,
words: HashMap::new(),
}
}
fn add_word(&mut self, word: &String) {
self.num_words += 1;
if self.words.contains_key(word) {
self.words.get_mut(word).unwrap().0 += 1;
} else {
self.words.insert(word.clone(), (1, 0.0f64));
}
}
fn train(&mut self, vocab: &HashSet<String>, total_examples: u32, smoothing: f64) {
self.probability = self.num_examples as f64 / total_examples as f64;
self.default_word_probability = smoothing /
(self.num_words as f64 + smoothing * vocab.len() as f64);
for word in vocab.iter() {
if self.words.contains_key(word) {
let word_entry = self.words.get_mut(word).unwrap();
let word_count = word_entry.0;
let p_word_given_label =
(word_count as f64 + smoothing) /
(self.num_words as f64 + smoothing * vocab.len() as f64);
word_entry.1 = p_word_given_label;
}
}
}
fn score_document(&self, document: &Vec<String>, vocab: &HashSet<String>) -> f64 {
let mut total = 0.0f64;
for word in document.iter() {
if vocab.contains(word) {
let word_probability = match self.words.get(word) {
Some( &(_, p) ) => p,
None => self.default_word_probability,
};
total += word_probability.ln();
}
}
self.probability.ln() + total
}
}
fn split_document(document: &String) -> Vec<String> {
let re = Regex::new(r"(\s)").unwrap();
re.split(document).map(|s| s.to_string()).collect()
}